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Abstract. A standardized methodology for the validation of short-term air quality forecast applications was developed in the 

framework of FAIRMODE activities. The proposed approach, focusing on specific features to be checked when evaluating a 

forecasting application, investigates the model capability to detect sudden changes of pollutants concentrations levels, to 20 

predict threshold exceedances and to reproduce air quality indices. The proposed formulation relies on the definition of 

specific forecast Modelling Quality Objective and Performance Criteria, defining the minimum level of quality to be 

achieved by a forecasting application when it is used for policy purposes. The persistence model, which uses the most recent 

observed value as predicted value, is used as benchmark for the forecast evaluation. The validation protocol has been applied 

to several forecasting applications across Europe, using different modelling paradigms and covering a range of geographical 25 

contexts and spatial scales. The method is successful, with room for improvement, in highlighting shortcomings and 

strengths of forecasting applications. This provides a useful basis for using short-term air quality forecast as a supporting 

tool for correct information to citizens and regulators. 

1 Introduction 

Air pollution models play a key role in both enhancing the scientific understanding of atmospheric processes and supporting 30 

policy in adopting decisions aimed at reducing human exposure to air pollution. Current European Air Quality Directives 
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(AQD), 2008/50/EC (European Union, 2008) and 2004/107/EC (European Union, 2004), and even more the proposal of their 

revision (European Union, 2022), encourage the use of models in combination with monitoring in a wide range of 

applications. Indeed, models have the advantages of being cheaper than measurements and covering continuously and 

simultaneously large areas. Advances in the knowledge of atmospheric processes and the enhancement in computational 35 

technologies fostered the usage of 3-dimensional numerical models, the Chemical Transport Models (CTM), not only for air 

quality assessment (retrospective simulation of historical air quality scenarios in support of regulation and planning) but also 

for real-time air quality forecasting (AQF). Indeed, during last decades, AQF systems based on CTM have been rapidly 

developed and they are currently operational in many countries, providing early air quality warnings that allow policy 

makers and citizens to take measures in order to reduce human exposure to unhealthy levels of air pollution. On European 40 

scale, a real-time air quality forecasting system (Marécal et al., 2015) is operational since 2015 in the framework of the 

Copernicus Atmosphere Monitoring Service (CAMS) and currently includes eleven numerical air quality models, 

contributing to the CAMS Regional Ensemble production (https://regional.atmosphere.copernicus.eu/). Several review 

papers are available in literature, comprehensively describing current status and emerging challenges in real-time air quality 

forecasting  (e.g. Kukkonen et al., 2012; Zhang et al., 2012; Baklanov et al., 2014; Ryan, 2016; Bai et al., 2018; Baklanov 45 

and Zhang, 2020; Sokhi et al., 2022), including AQF system based on artificial intelligence (AI) methods (e.g. Cabaneros et 

al., 2019; Masood and Ahmad, 2021; Zhang et al., 2022). 

A thorough assessment of model performances is fundamental to build confidence in models’ capabilities and potentials and 

becomes imperative when model applications support policymaking. Moreover, performance evaluation is very important 

also for research purposes, since investigating models’ strengths and limitations provides essential insights for planning new 50 

model developments.  

The main goal of a model evaluation process is to prove that the performances are satisfactory for its intended use, in other 

words, that it is “fit for purpose”. Indeed, to be able to determine whether a model application is “fit for purpose”, its purpose 

should be stated at the outset. Since air quality models are used to perform various tasks (e.g. assessment, forecasting, 

planning), depending on the aim pursued, different evaluation strategies should be put into practice.   55 

Several scientific studies have already proposed different evaluation protocols or suggested recommendations for good 

practices (e.g. Seigneur et al., 2000; Chang and Hanna, 2004; Borrego et al., 2008; Dennis et al., 2010; Baklanov et al., 2014; 

Emery et al., 2017). Models applied for regulatory air quality assessment are commonly evaluated by statistical analysis, 

examining how well they match the observations. From literature review, many statistical measures are used to quantify the 

different aspects of the agreement between simulations and observations. Indeed, no single metric is likely to reveal all 60 

aspects of model skills. So, the usage of several metrics, in concert, is generally recommended to support an in-depth 

assessment of performances. Zhang et al. (2012) provide an exhaustive collection of the most used metrics, including both 

traditional discrete statistical measures (e.g. Emery et al., 2017), quantifying the differences between modelled and observed 

values, and categorical indices (e.g. Kang et al., 2005), describing the capability of the model application in predicting 

categorical answers (e.g. exceedances of limit values). 65 
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Ideally, a set of performances criteria should be given within a model evaluation exercise, stating if the model application 

skills can be considered adequate. As an example, Boylan and Russell (2006) and Chemel et al. (2010) proposed 

performance criteria and goals for mean fractional bias (MFB) and mean fractional error (MFE) concerning the validation of 

aerosol and ozone modelling applications, respectively. More in details, criteria define the acceptable accuracy level whereas 

goals specify the highest expected accuracy. Russell and Dennis (2000), citing Tesche et al. (1990), provided informal 70 

fitness criteria for urban photochemical modelling, according to some commonly used metrics (i.e. normalized bias, 

normalized gross error, unpaired peak prediction accuracy). Indeed, these recommendations are based on outcomes of 

performances skills from previous model studies. Specifically concerning AQF, in the framework of CAMS Regional 

Ensemble production, performances targets (Key Performance Indicators, KPI) are defined for the root mean square error 

(RMSE) in simulating ozone, nitrogen dioxide and aerosol and their compliance is regularly reported within the Quarterly 75 

Evaluation and Quality Control Reports (https://atmosphere.copernicus.eu/regional-services). 

Concerning both the definition of protocols for model evaluation and the proposal of performances criteria, an important 

contribution came in the last decades from the activities and the coordination efforts of the Forum for Air quality Modeling 

in Europe (FAIRMODE, https://fairmode.jrc.ec.europa.eu/home/index). FAIRMODE was launched in 2007 as a joint 

initiative of the European Environment Agency (EEA) and the European Commission Joint Research Centre. Its primary aim 80 

is to promote the exchange of good practices among air quality modellers and users and foster harmonization in the use of 

models by European Member States, with emphasis on model application under the European Air Quality Directives. In this 

context, one of the main activities of FAIRMODE has been the development of harmonized protocols for the validation and 

the benchmarking of modelling applications, including the definition of common standardized Modelling Quality Objectives 

(MQO) and Modelling Performance Criteria (MPC) to be fulfilled in order to ensure a sufficient level of quality of a given 85 

modelling application. More in details, an evaluation protocol was proposed for the evaluation of model applications for 

regulatory air quality assessment. The methodology (Thunis et al., 2012b; Pernigotti et al., 2013; Thunis et al., 2013; Janssen 

and Thunis, 2022) is based on the comparison of model-observation differences (namely, the root mean square error) with a 

quantity proportional to the measurement uncertainty. The rationale is that a model application can be considered “fit for 

purpose” if the model-measurement differences remain within a given proportion of the measurement uncertainty. The 90 

approach, consolidated in the DELTA Tool software (Thunis et al. 2012a, 

https://aqm.jrc.ec.europa.eu//Section/Assessment/Download), has reached a good level of maturity and has been widely used 

and tested by model developers and users (Georgieva et al., 2015; Carnevale et al., 2015; Monteiro et al., 2018; Kushta et al., 

2019). This approach focuses on applications related to air quality assessment, in the context of the AQD 2008/50/EC 

(European Union 2008), taking into account pollutants and metrics consistently with the AQD requirements. Recently, 95 

FAIRMODE worked on developing and testing additional quality control indicators to be complied when evaluating a 

forecast application, extending the approach used for assessment applications. A scientific consensus was reached, focusing 

on the model ability in accurately predicting sudden changes and peaks in the pollutant concentration levels. The proposed 
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methodology, based on the usage of the persistence model (e.g. Mittermaier, 2008) as a benchmark, is now publicly 

available for testing and application. 100 

This paper describes this new standardized approach and is organized as follows. Sect. 2 illustrates the rationale and the 

main features of the developed methodology. Sect. 3 describes the setup of the forecasting simulations to which the 

methodology was applied, including information on the monitoring data used for the validation. Results are presented in 

Sect. 4, focusing on lessons learnt from the application of the proposed approach in different geographical contexts and 

spatial scales. Finally, some conclusions are drawn in Sect. 5 together with hints for further developments. 105 

2 Methodology 

The proposed methodology for forecasting evaluation comes on top of the consolidated evaluation protocol fostered by 

FAIRMODE for the evaluation of model applications for regulatory air quality assessment. Therefore, it is recommended 

that forecasting applications fulfil the standard assessment MQO, as defined in Janssen and Thunis (2022), as well as the 

additional forecast objectives and criteria, as defined within the new specific protocol. This section describes its main 110 

features, focusing on some specific skills to be checked when evaluating a forecasting application, namely the model 

capability to detect sudden changes of concentrations levels (Sect. 2.1), to predict threshold exceedances (Sect. 2.2) and to 

reproduce air quality indices (Sect. 2.3).  

The methodology, as currently implemented in the DELTA Tool software, supports the following pollutants and time 

averages: NO2 daily maximum, O3 daily maximum of 8-hour average, PM10 and PM2.5 daily mean. 115 

2.1 Forecast Modelling Quality Objective (MQOf) based on the comparison with the persistence model 

Predicting the status of air quality is useful in order to prevent or reduce health impacts from acute episodes and to trigger 

short-term action plans. Therefore, it is of main interest to verify the forecast applications ability in accurately reproducing 

sudden changes in the pollutant concentration levels. To account for this, the main evaluation assessment of the “fitness for 

purpose” of a forecast application is based on the usage, as a benchmark, of the persistence model, that is by default not able 120 

to capture any changes in the concentration levels, since measurement data of the previous day are used as an estimate for 

the full forecast horizon. Indeed, the persistence approach is the simplest method for predicting the future behaviour, if no 

other information is available and is often used as a reference in verifying the performances of weather forecasts (e.g. Knaff 

and Landsea, 1997; Mittermaier, 2008). 

Within the proposed forecasting evaluation protocol, the root mean square error of the forecast model is compared with the 125 

root mean square error of the persistence model. More in detail, a forecast Modelling Quality Indicator (MQIf) is defined as 

the ratio between the two RMSEs, i.e.  
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where Mi, Pi, Oi represent respectively the forecast, the persistence, and the measured values for day i, and N is the number 

of days included in the time series. 130 

The persistence model uses the observations from the previous day as an estimate for all forecast days. As an example, we 

can consider a 3 day-forecast, providing today (day0), tomorrow (day1), and the day after tomorrow (day2) concentration 

values. If today is 5th February, persistence model uses data referring to yesterday (4th February) for all forecast data 

produced today. So, Pi refers to Oi-1 for day0 (5th February), it refers to Oi-2 for day1 (6th February) and it refers to Oi-3 for 

day2 (7th February). More generally, the persistence model is related to the forecast horizon (FH =0, 1, 2, etc.) as follows: 135 

𝑃𝑃𝑖𝑖 = 𝑂𝑂𝑖𝑖−1−𝐹𝐹𝐹𝐹 ± 𝑈𝑈(𝑂𝑂𝑖𝑖−1−𝐹𝐹𝐹𝐹)                                                                                                                                                                    (2)   

where the measurement uncertainty U is also taken into account, consistently with the FAIRMODE approach. The 

methodology for estimating the measurement uncertainty as a function of the concentrations values is described in Janssen 

and Thunis (2022), where the parameters for its calculation for PM, NO2 and O3 are provided as well. Some details are 

provided in Appendix A.  140 

Fulfilment of the forecast Modelling Quality Objective (MQOf) implies that a minimum level of quality for policy purposes 

is achieved by the forecasting application. The MQOf is fulfilled when MQIf is less than or equal to 1, indicating that the 

forecast model performs better (within the measurement uncertainty) than the persistence one. 

Additional Modelling Performance Indicators (MPIs) are defined based on the mean fractional error (MFE), a normalized 

statistical indicator widely used in literature, defined as follows:  145 
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2
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                                                                                                                                                                           (3) 

Based on this indicator, two different MPIs are defined and both included within the protocol: 1) MPI1= MFEf /MFEp that 

compares the forecast model performances with the persistence model ones; 2) MPI2= MFEf /MFU that evaluates forecast 

performances regardless of persistence aspects, using an acceptability threshold based on measurement uncertainty, where 

MFU is the Mean Fractional Uncertainty, defined as follows: 150 

𝑀𝑀𝑀𝑀𝑈𝑈 =
1
𝑁𝑁
�

2𝑈𝑈(𝑂𝑂𝑖𝑖)
𝑂𝑂𝑖𝑖

𝑁𝑁

𝑖𝑖=1

                                                                                                                                                                                 (4) 

 Using the uncertainty parameters provided in Table A1 in Appendix A, it turns out that 2𝑈𝑈(𝑂𝑂𝑖𝑖)/𝑂𝑂𝑖𝑖 shows larger values in 

the low concentration range and then tends towards a constant (0.5 for NO2, 0.3 for O3, 0.55 for PM10, 0.6 for PM2.5) at 

higher concentration values (Fig. A1, in Appendix A). So the choice of MFU as the acceptability threshold is consistent with 

performances criteria and goals defined in literature for PM (Boylan and Russell, 2006) and O3 (Chemel et al., 2010) and it 155 

has the advantage that it does not introduce any additional free parameters and it can be applied to all pollutants for which 
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uncertainty parameters are set. For both MPIs, Modelling Performance Criteria (MPC) are defined, being fulfilled when 

MPIs are less or equal to 1.   

 2.2 Assessment of modelling application capability in predicting Threshold Exceedances                                                                                            

When a forecasting system is used for policy purposes, it is of main interest to verify the skill in predicting categorical 160 

answers (yes/no) in relation to exceedances of specific threshold levels, e.g. the limit values set by the current European 

legislation (European Union, 2008).  

To account for this, the most commonly used threshold indicators (as defined in Table 1) are included in the proposed 

validation approach, based on the 2x2 contingency table (Table B1, in Appendix B) representing the joint distribution of 

categorical events (below/above the threshold value) predicted by the model and observed by the measurements. Namely, 165 

GA+ represents the number of correctly forecasted exceedances, GA- represents the number of correctly forecasted non-

exceedances, FA (False Alarms) represents the number of forecasted exceedances that were not observed, and MA (Missed 

Alarms) represents the number of observed exceedances that were not forecasted.  

All metrics included are listed in Table 1, ranging from 0 to 1, being 1 the optimal value. 

Table 1. Categorical metrics included in the validation protocol. 170 

Metrics Mathematical Expression 

Accuracy 𝐴𝐴𝐴𝐴𝐴𝐴 =
𝐺𝐺𝐴𝐴+ + 𝐺𝐺𝐴𝐴−

𝑀𝑀𝐴𝐴 + 𝐺𝐺𝐴𝐴+ + 𝐺𝐺𝐴𝐴− + 𝑀𝑀𝐴𝐴
 

Success Ratio 
𝑆𝑆𝑆𝑆 =

𝐺𝐺𝐴𝐴+
𝑀𝑀𝐴𝐴 + 𝐺𝐺𝐴𝐴+

 

Probability of Detection 
𝑃𝑃𝑃𝑃 =

𝐺𝐺𝐴𝐴+
𝐺𝐺𝐴𝐴+ + 𝑀𝑀𝐴𝐴

 

FBias score 
𝑀𝑀𝐹𝐹 =

𝑀𝑀𝐴𝐴 + 𝐺𝐺𝐴𝐴+
𝐺𝐺𝐴𝐴+ + 𝑀𝑀𝐴𝐴

 

Threat score 
𝑇𝑇𝑆𝑆 =

𝐺𝐺𝐴𝐴+
𝑀𝑀𝐴𝐴 + 𝐺𝐺𝐴𝐴+ + 𝑀𝑀𝐴𝐴

 

Gilbert Skill score 

𝐺𝐺𝑆𝑆𝑆𝑆 =
𝐺𝐺𝐴𝐴+ − 𝐻𝐻

𝑀𝑀𝐴𝐴 + 𝐺𝐺𝐴𝐴+ + 𝑀𝑀𝐴𝐴 − 𝐻𝐻
   

 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐻𝐻 =
(𝐺𝐺𝐴𝐴+ + 𝑀𝑀𝐴𝐴)(𝑀𝑀𝐴𝐴 + 𝐺𝐺𝐴𝐴+)
𝑀𝑀𝐴𝐴 + 𝐺𝐺𝐴𝐴+ + 𝐺𝐺𝐴𝐴− + 𝑀𝑀𝐴𝐴

 

 

https://doi.org/10.5194/gmd-2023-65
Preprint. Discussion started: 12 April 2023
c© Author(s) 2023. CC BY 4.0 License.



7 
 

2.3 Assessment of modelling application capability in predicting Air Quality Indices 

One of the main objectives of a forecasting system is to provide citizens with simple information about local air quality and 

its potential impact on their health, with special regard to the sensitive and vulnerable groups (i.e., the very young or old, 

asthmatics, etc.). Air Quality Indices (AQI) are designed to provide information on the potential effects of the different 175 

pollutants on people’s health by means of a classification of concentrations values in terms of qualitative categories.  

The AQI outcome is commonly provided by operational forecasting systems, therefore its assessment has been included in 

the proposed validation approach, by means of a simple multiple thresholds assessment. More in detail, the number of days 

predicted by the forecast model in each category is compared with the corresponding number of measured days. 

Of course, the performance assessment depends on the chosen classification table. In the current approach, several AQI 180 

tables are available,  namely EEA (https://www.eea.europa.eu/themes/air/air-quality-index/index), United Kingdom 

(https://uk-air.defra.gov.uk/air-pollution/daqi; https://uk-air.defra.gov.uk/air-pollution/daqi?view=more-info), and USEPA 

(U.S. Environmental Protection Agency, https://www.airnow.gov/aqi/aqi-basics/, Eder et al. 2010) classification tables. 

3 Forecasting applications: models, setup and monitoring data for validation 

The proposed methodology was applied across Europe to evaluate the performances of several forecasting applications. This 185 

paper focuses on lessons learnt by the validation of five forecasting applications, based on various methods (both in terms of 

chemical transport models and statistical approaches) and covering different geographical contexts and spatial scales, from 

very local to European scale. The key features of the forecast applications are summarized in Table 2. Some more details are 

provided for each of them in the following, along with information on the monitoring data used for the validation. 

  190 
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Table 2. Main features of the forecast applications. 

Forecast 
application 
Acronym 

Operated by 
Modelling 

System 
Modelling 
approach 

Time 
Period 

Horizontal 
Domain & 
Resolution 

Meteo Emissions 
Boundary 
Conditions 

Data 
Assimil

ation 

FA1 ENEA MINNI 
Dispersion 

Model 

Year-long 
Simulation 

(2018) 

Europe 
(25°W-45°E, 
30°N-72°N) 

Resolution: 0.1° 

IFS  
CAMS 
REG 
(v5.1) 

C-IFS NO 

FA2 CESAM 
WRF-

CHIMERE 
Dispersion 

Model 

Year-long 
Simulation 

(2021) 

Portugal 
(10.3°W-5.7°W, 
36.4°N-42.6°N) 

Resolution: 0.05° 

NCEP/ 
GFS  

EMEP/ 
CEIP 

 GOCART for 
dust, LMDz-

INCA for 
gaseous and 
other aerosol 

species 

NO 

FA3 VITO OPAQ 
Neural 

Networks 

Year-long 
simulation 

(2022) 

Ireland  
(10.5°W-5.9°W,  
51.4°N-55.4°N)  
Resolution: 3 km 

ECMWF 
Not 

applicable 
Not applicable NO 

FA4 ARPAE NINFA 
Dispersion 

Model 

Year-long 
Simulation 

(2021) 

Prepair domain  
(6.25°E-16.75° E, 
43.1°N-47.35°N) 
Resolution: 0.07° 

x 0.05° 

COSMO 
ISPRA, 

PREPAIR 
kAIROS NO 

FA5 ATMOTERM CALPUFF  
Dispersion 

Model 

July 2020 -
September 

2022 

Variable spatial 
grid-size covering 

Kosovo 
(1 km/0.5km) 

Pristine 
(200m/50m) 

WRF 
Kosovo 
emission 
inventory 

CAMS 
ENSEMBLE 

YES 
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3.1 MINNI simulation over Europe (FA1) 195 

The first forecast application (FA1) was operated by ENEA applying the MINNI Atmospheric Modelling System (Mircea et 

al., 2014; D’Elia et al., 2021) on a European domain at 0.1° horizontal spatial resolution. A year-long simulation, referring to 

2018, was carried out using CAMS Regional Emission Inventory (CAMS REG, version v51, 

https://eccad3.sedoo.fr/catalogue), daily biomass burning emissions from Global Fire Assimilation System (GFAS,  

https://confluence.ecmwf.int/display/CKB/CAMS+global+biomass+burning+emissions+based+on+fire+radiative+power+%200 

28GFAS%29%3A+data+documentation), Integrated Forecasting System meteorological fields (IFS, 

https://www.ecmwf.int/en/publications/ifs-documentation) and boundary conditions from the Chemical-Integrated 

Forecasting System (C-IFS; https://www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-composition). 

MINNI, which is operationally providing air quality predictions over an Italian domain since 2017 (Adani et al., 2020, 

2022), was recently added to the ensemble of the eleven models contributing to the CAMS Regional Ensemble production. 205 

As FA1 was carried out during a preliminary benchmark phase, planned for evaluating model performances and for setting-

up the operational chain, it was carried out using CAMS input and setup but it is not an official CAMS product.  

Since no data assimilation was applied within FA1, all available data measured at European background monitoring stations 

and collected by EEA (E1a at https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm) were considered for the 

validation. 210 

3.2 WRF-CHIMERE simulation over Portugal (FA2) 

In Portugal, an air quality modelling system based on the WRF version 3 (Skamarock et al., 2008) and the CHIMERE 

chemical transport model v2016a1 (Menut et al., 2013; Mailler et al., 2017) is being used for forecasting purposes at daily 

basis since 2007 (Monteiro et al., 2005, 2007a, b). The modelling setup comprises three nested domains covering part of the 

North Africa and Europe, with horizontal resolutions of 125×125 km2, 25×25 km2 and 5×5 km2 for the innermost domain 215 

covering Portugal. At the boundaries of the outermost domain, the outputs from LMDz-INCA (Szopa et al., 2009) are used 

for all gaseous and aerosol species, and dust from the GOCART model (Ginoux et al., 2001). For the nested domains, the 

boundary conditions are updated every hour using the outputs from the coarse CHIMERE simulation. The initial conditions 

are defined by the 24-h forecast from the previous-day model run. In addition to the meteorological fields (from the WRF 

Model) and the chemical boundary conditions, another important input includes the primary pollutant emissions. The main 220 

human activities emissions (traffic, industries and agriculture, among others) are derived based on data from the annual 

EMEP/CEIP emission database (available at https://www.ceip.at/webdab-emission-database/), following a procedure of 

spatial and temporal downscaling. Biogenic emissions are computed online using the MEGAN model (Guenther et al., 

2006), while dust emission fluxes are calculated using the dust production model proposed by Alfaro and Gomes (2001). 
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Data from the Air Quality National Monitoring network (https://qualar.apambiente.pt) is used every year to assess the 225 

performance of this forecasting modelling system, usually evaluated at annual basis. This comprehends a group of more than 

40 background monitoring stations, classified as urban, suburban and rural environment, according to the classification 

settled by European legislation. 

3.3 OPAQ simulation over Ireland (FA3) 

The OPAQ (Hooyberghs et al., 2005; Agarwal et al., 2020) statistical forecast system has been configured and applied to 230 

forecast pollution levels in Ireland by the Irish EPA and VITO. During the configuration stage neural networks are trained at 

station level with historical observations, ECMWF-ERA5 reanalysis meteorological data and the CAMS air quality 

forecasts. For each monitoring station, different neural network models are tested and validated. Both feed-forward (FF) and 

recurrent neural networks are applied. The model showing the best performances will be operationally used to inform the 

public on the expected evolution in pollution levels for a forecast horizon available up to three days on an hourly basis. The 235 

forecasts at station level are interpolated to forecast maps for the whole country using the detrended kriging model RIO 

(Janssen et al., 2008; Rahman et al., 2023) which is part of the OPAQ system. The interpolation model has been configured 

for Ireland at 3 by 3 km². A spatial driver for the detrending and retrending step is constructed and optimized relying on 

CORINE 2012 land cover data, population density, altitude information and CAMS reanalysis annual average concentration 

maps. 240 

In this study, we present the historical validation results of a feed-forward neural network model that uses 2-metre 

temperature, vertical and horizontal wind velocity component, CAMS PM10 forecasts, and PM10 observations. More than 

two years of data are used to configure the OPAQ model. Data from October 2019 to June 2022 are used for training. The 

model is validated on the data for July to December 2022. The testing holdout sample, used to avoid over fitting, covers a 

timespan of three months from June to September 2019.The model was optimized using the Adamax algorithm (Kingma and 245 

Ba, 2014) with 4 hidden layers and 200 units per layer, the activation function uses sigmoid functions while the mean 

squared error is used as loss function. 

3.4 NINFA simulation over Po Valley and Slovenia (FA4) 

FA4 was operated by ARPAE applying NINFA, his operational Air Quality Model Chain over Po Valley and Slovenia in the 

framework of Life Ip Prepair project (https://www.lifeprepair.eu/; Raffaelli et al., 2020), with horizontal resolution of 5 km. 250 

The model suite includes a Chemical Transport Model, a meteorological model and an emissions pre-processing tool. The 

chemical transport model is CHIMERE, v2017r3. Starting from the emission data for the Po Valley (Marongiu et al., 2022), 

Slovenia and the other regions/countries present in the model domain (http://www.lifeprepair.eu/wp-

content/uploads/2017/06/Emissions-dataset_final-report.pdf), the emissions are prescribed to the grid model by using 

specific proxy variables for each emission activity at SNAP3 level (i.e. road network for traffic emission, population and 255 

urban fabric for domestic heating, and so on). The meteorological hourly input is provided by COSMO (http://www.cosmo-
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model.org; Baldauf et al., 2011; Doms and Baldauf, 2018), the national model used by the National Civil Protection 

Department. COSMO is a non-hydrostatic, limited-area atmospheric prediction model, based on the primitive thermo-

hydrodynamical equations describing compressible flow in a moist atmosphere, with a variety of physical processes taken 

into account by dry and moist parameterization schemes. The boundary conditions are provided by kAIROS (Stortini et al., 260 

2020) a national model run by ARPAE (https://www.snpambiente.it/prodotti/previsioni-qualita-dellaria-in-italia/). 

The database of observed data used in this work, was built with the support of PREPAIR partners providing revised 

validated data for 2021. 

3.5 CALPUFF simulation over Kosovo (FA5) 

FA5 was operated by ATMOTERM Company between July 2020 and September 2022. Analyses were based on data 265 

available from Kosovo Air Quality Portal hosted by the Hydrometeorological Institute of Kosovo and Kosovo Open Data 

Platform (https://airqualitykosova.rks-gov.net/en/; https://opendata.rks-gov.net/en/organization/khmi). Forecast Service was 

using the following modelling tools: WRF meteorological prognostic model, CAMS ENSEMBLE Eulerian air quality 

models and CALPUFF Modelling System with 1 km receptor grid covering the Kosovo territory and 0.5 km grid applied in 

the main Kosovo cities. In addition a high resolution receptor network was created for Pristine, with the basic grid step of 270 

200 m and 50 m along the roads. Variable spatial grid-size included almost 13000 grid points for Kosovo and about 12000 

grid points for Pristine. Emission input data were prepared on the basis of Kosovo emission inventory for 2018 year 

(https://ajri.niph-rks.org/). Input data for WRF model were collected from the global forecasting model GFS NCEP with 

spatial resolution of 0.25°. Boundary condition for CALPUFF were obtained from Copernicus CAMS service (CAMS 

ENSEMBLE model). The system includes an assimilation module implemented at the post-processing stage using available 275 

data from all monitoring stations in Kosovo. FA5 presented 3-day forecast of four pollutants: PM10, PM2.5, NO2 and O3 and 

the European Air Quality Index (AQI). AQI calculation is based on EEA methodology 

(https://airindex.eea.europa.eu/Map/AQI/Viewer/#). 

4 Results, Lessons learnt and Discussion 

This section presents outcomes of the validation of the five forecasting applications, focusing on the lessons learnt by the 280 

application of the proposed evaluation protocol to different geographical contexts and spatial scales and pointing out to the 

strengths and shortcomings of the approach in highlighting the skills of forecasting applications. 

4.1 MQOf skills versus the capability of predicting Threshold Exceedances 

The main assessment of the “fitness for purpose” is presented here for three forecasting applications, covering different 

spatial scales, namely FA1 (European scale), FA2 (national scale), and FA4 (regional scale). Along with MQOf outcomes, 285 

the skills of the three modelling applications in predicting threshold exceedances are provided as well. We present outcomes 
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for PM10 daily mean and O3 daily maximum of 8-hour average, since both indicators have a daily limit value set by the 

current European legislation (European Union, 2008).  

Fig. 1, Fig. 2, and Fig.3 show the outcomes for FA1, FA2, FA4 applications, respectively, in the form of panels of 4 plots. 

PM10 outcomes are on the left side of each panel while the O3 ones are on the right side. MQIf  values are provided in the 290 

Forecast Target Plots (Janssen and Thunis, 2022), at the top of each panel. Within these plots, MQIf is represented by the 

distance between the origin and a given point (for each monitoring station). Values lower than 1 (i.e. within the green circle) 

indicate better capabilities than the persistence model (within the measurement uncertainty), whereas values larger than 1 

indicate poorer performances. Indeed, the green area identifies the fulfilment of the MQOf at each monitoring stations. The 

MQIf associated to the 90th percentile worst station is reported in the upper left corner of the plots. This value is used as the 295 

main indicator in the benchmarking procedure: its value should be less than or equal to 1 for the fulfilment of the 

benchmarking requirements. In other words, a forecasting application is “fit for purpose” if MQIf   is lower than 1 for at least 

90% of the available stations. 

The outcomes of all categorical metrics included in the validation protocol are provided at the bottom of each panel, by 

means of the Forecast Summary P-Normalized Reports. Within these plots, the statistical distribution (5th, 25th, 50th, 75th, 95th 300 

percentiles) of the outcomes of all the indicators defined in Sect. 2.2 are summarized and compared with the corresponding 

outcomes of the persistence model (i.e. the ratios of the skills are considered). Green area indicates that model performs 

better than the persistence model for that particular indicator. 
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Figure 1: FA1 validation outcomes for PM10 (left) and O3 (right). Forecast Target Plots (top) provide MQIf values for each 305 
monitoring station, as the distance between the origin and a given point. Box plots in the Forecast Summary P-Normalized Reports 
(bottom) provide the statistical distribution (5th, 25th, 50th, 75th, 95th percentiles) of the categorical metrics.  
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Figure 2: As Fig.1, for FA2 validation outcomes. 

  310 
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Figure 3: As Fig.1, for FA4 validation outcomes. 

Forecast Target Plots outcomes indicate a very good level of quality of all forecast applications in simulating O3. The 90th 

percentile of the MQIf values is lower than 1 for all three forecast applications, indicating that model performs better than 

persistence in simulating O3 at more than 90% of the available stations. FA2 and FA4 fulfil MQIf requirements also in 

simulating PM10, instead there is room for improvement for the European scale simulation FA1 (90th percentile of the MQIf 315 

values is slightly higher than 1). Further investigations show that most of the issues emerge in a limited part of the modelling 

domain (Turkey), where very high, and sometimes unlikely, PM10 values are measured at several monitoring sites for most 

of the year. Removing Turkish monitoring stations from the validation data set, MQOf turns out to be fulfilled (Fig. C1, in 

Appendix C). 

Concerning the capability in predicting exceedances, model performances improve moving from FA1 to FA4 applications 320 

(i.e. as spatial resolution increases) and skills are generally better in simulating O3 than PM10. Concerning the comparison of 

the performances according to the different metrics, all forecast applications turn out to be better in avoiding false alarms 

than in reproducing all of them, since Success Ratio (SR) scores are generally better than Probability of Detection (PD) ones, 

especially for PM10.  

In general, even if forecast applications are generally better than the persistence model according to the main outcome MQOf 325 

(top plots of Fig.1, Fig. 2, and Fig. 3), it becomes harder for them to beat the persistence model in predicting exceedances 
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(bottom plots of Fig.1, Fig. 2, and Fig. 3). Apart from few cases (namely the regional FA4 application), the median values of 

the statistical distribution of the outcomes are not in the green area, indicating that model performs worse than persistence at 

more than 50% of the available stations.  

4.2 MPI Plot supporting the interpretation of MQOf outcomes 330 

When evaluating a forecasting application, it is of interest to assess the evolution of skills metrics with the forecast horizon. 

Indeed, a good forecasting application should not incur a substantial degradation of its performances along with forecast 

time. 

FA3, carried out over Ireland by means of the OPAQ statistical system, was evaluated for each of the forecasted days, which 

included the current day (day0), tomorrow (day1) and the day after tomorrow (day2). 335 

Fig. 4 shows how performances in simulating PM10 vary along with the forecast days. More in detail outcomes for day0 (on 

the left) and day2 (on the right) are shown. On the top of the panel, the Forecast Target Plots (described in the previous 

section) are reported. On the bottom, the Forecast MPI Plots are added, describing the fulfilment of both the criteria defined 

in Sect. 2.1 (i.e. MPI less than or equal to 1). Indeed, here the forecast performances (MFEf) are compared to the persistence 

model performances (MFEp) along Y axis (MPI1) and to the Mean Fractional Uncertainty (MFU) along the X axis (MPI2). 340 

The green area identifies the area of fulfilment of both criteria. The orange areas indicate where only one of them is fulfilled. 
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Figure 4: FA3 validation outcomes for day0 (left) and day2 (right). Forecast Target Plots (top) provide MQIf values for each 
monitoring station, as the distance between the origin and a given point. Forecast MPI Plots (bottom) provide for each monitoring 345 
station MPI1 along Y axis and MPI2 along the X axis. 

Outcomes in Fig.4 indicate a very good level of quality of the forecast application, since Modelling Quality Objective is 

fulfilled (top), together with the two additional Performance Criteria (bottom).  

Concerning the evolution of skills metrics with forecast horizon, according to the Forecast Target Plot outcomes (top), 

modelling performances unexpectedly get better from day0 to day2, since the MQIf value associated to the 90th percentile 350 

worst station (reported in the upper left corner of the plots) turns out to get lower. According to the Forecast MPI Plots 

(bottom), performances remain almost constant with forecast horizon, indicative of a good behaviour of the modelling 

application. Moreover, Forecast MPI Plots help to clarify that the unrealistic improvement of model performances from day0 

to day2, pointed out by the Forecast Target Plots, is due to persistence model performances degradation. Indeed, moving 

from day0 to day2, the forecast model performances get slightly better along Y axis, where they are normalized to 355 

persistence model skills, but they slightly deteriorate along X axis, where they are considered regardless of persistence 
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aspects. In other words, model performances slightly deteriorate along with the forecast days but persistence model 

deteriorate more, so that performances ratios (i.e. both MQIf and MPI1 values) get lower. 

4.3 Assessment of modelling application capability in predicting Air Quality Indices 

The current approach for the assessment of modelling application capability in predicting Air Quality Indices is based on a 360 

cumulative analysis for answering the following questions: “Are citizens correctly warned against high pollution episodes?” 

or in another words: “Does the model properly forecast AQI levels?” 

Air Quality Indices are designed to provide information on local air quality. Moreover, within the proposed validation 

protocol, the capability of correctly predicting AQI is assessed at single monitoring stations. For these reasons, FA5 at the 

local scale is the most suitable for testing the proposed approach. Indeed, it was carried out at high spatial resolution and 365 

focuses on only two monitoring sites, located in two cities in Kosovo: Pristine (the capital) and Drenas.  

Before analysing AQI results for PM2.5, it has to be mentioned that the Forecast Target Plot and the Forecast MPI Plot show 

very good performances for both locations. The Forecast Summary P-Normalized Report indicates good model performance 

in Drenas and some room for improvements in Pristine location due to underestimation of PM2.5 episodes. 

Fig. 5 provides the AQI diagram, based on EEA classification, for PM2.5 and for day0 forecast. For each station, the bar plot 370 

shows two paired bars: the number of predicted (left bar) and measured (right bar) concentration values that fall within a 

given air quality category. In Drenas, forecast values populate categories 2 (“Good”), 3 (“Medium”), and 4 (“Poor”) to a 

greater extent than the measurements. On the contrary, in Pristine forecast values are more frequent than the measurements 

at the lowest AQI (“Very Good”).  
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 375 

Figure 5: FA5 validation outcomes for PM2.5 at Drenas and Pristina. AQI diagram provide for each monitoring station the 
number of predicted (left bar) and measured (right bar) concentration values that fall within each air quality category. The last 
two EEA AQI classes (“Very poor” and “Extremely poor”) are merged into one. 

Overall, Fig. 5 points out that FA5 generally overestimates PM2.5 concentration levels in Drenas and underestimates them in 

Pristine. Anyway, AQI forecast bar plots provide information about the total number of occurrences in each AQI class but 380 

there is no information about the correct timing of the forecasted AQI level. 

So, there is room for future improvement and other additional outputs could be included within the protocol. In particular, 

multi-category contingency tables can be created for each station and multi-categorical skill scores can be computed, 

according to literature (e.g. EPA, 2003). Outcomes can be plotted for single stations or describing, for each AQI class, skill 

scores statistical distribution among the stations. 385 

For example, in Fig. 6 an in-depth insight of AQI assessment is proposed for Drenas (top) and Pristina (bottom). Two 

additional multi-categorical metrics are proposed. Both of them are computed for each AQI level and are based on the 

comparison between forecast and measurement values considering also the correct timing of the predicted AQI level. AQI 

comparability (left plots in Fig. 6) represents, for each of the five AQI classes, the percentage of the correct forecast events 

in this class with respect to the total events based on measurements. Since AQI comparability values are percentages, they 390 

range from 0 to 100, being 100 the optimal value. TS_AQI (right plots in Fig. 6) is computed according to the same 
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definition of TS in Table 1. Indeed, here multiple thresholds (i.e. class limits) are taken into account and so multiple 

outcomes, one for each AQI class, are provided. TS_AQI values range from 0 to 1, being 1 the optimal value. 

 

Figure 6: Multi-categorical metrics outcomes for Drenas (top) and Pristina (bottom). AQI comparability plots (left) provide for 395 
each AQI class the percentage of the correct forecast events with respect to the total events based on measurements. TS_AQI plots 
(right) provide for each AQI class TS_AQI values. 

AQI Comparability and TS_AQI in Fig. 6 provide additional information with respect to AQI diagram. For example, in the 

case of Drenas, it turns out that, according to both the metrics, the best agreement between forecast and measurements in 

predicting the correct timing of the occurrences are found for “Poor” AQI class. It is also worth noting that, even if 400 

according to cumulative analysis (Fig. 5) forecast and measurements present a similar number of occurrences in both the 

“Medium” and the “Very Poor” classes, according to AQI Comparability, these classes are characterized by the worst 

performances. TS_AQI gives additional information about the model performances, which is especially noticeable for the 

“Medium” and “Very poor” classes, as it defines levels differently (“Medium” class means “Medium” class and all higher 

classes – “Poor” and “Very poor”). In this case the “Medium” class is characterized by better performances than the “Very 405 
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Poor” class. In the case of Pristine location, the best performances, according to both the metrics, are achieved for low 

concentrations (“Very Good” and “Good” classes) and the worst ones for “Very Poor” and “Medium” AQI levels. It is also 

worth noting that the best agreement is found for “Good” class, according to the cumulative comparison (Fig. 5), but it is 

better for “Very Good” class if the timing of the occurrences is taken into account (Fig. 6).  

4.4 Discussion 410 

Several lessons were learnt from the results presented here. The main “fitness for purpose” criterion (MQOf) turned out to be 

useful for a comprehensive evaluation of the strengths and the shortcomings of a forecasting evaluation.  

Side outcomes, included within the protocol, can help in deepening the analysis. For example, MPIs analysis based on MFE 

helps in interpreting the outcomes, since MPI2 is formulated regardless of persistence aspects, providing, as an added value, 

an evaluation of the model performances quality itself. 415 

Concerning the capability in predicting the exceedances, it turned out that, regardless of the spatial scale and the pollutants, 

even if a forecast application is better than the persistence model according to the general “fitness for purpose” criterion 

(MQOf), it can be worse in correctly providing categorical answers. Indeed, the difficulty in beating the persistence model 

skills is not infrequent in weather forecasting applications (Mittermaier, 2008). Moreover, it is worth noting that, differently 

from MQOf analysis, the evaluation of the model capability in predicting the exceedances, being based on the definition of 420 

fixed thresholds, does not take into account the measurement uncertainty. For these reasons, a “fitness for purpose” criterion 

concerning exceedances metrics (e.g., which percentiles of a categorical indicator should be in the green area in order to 

define its skill “good enough”? and following on from that, how many indicators should be “good enough” in order to define 

the forecast application “fit for purpose”?) is not definitively set within the proposed protocol. Indeed, some more discussion 

based on further tests on forecasting applications are needed.  425 

The greatest room for improvement turns out concerning the evaluation of the capability of the forecasting application in 

predicting AQI levels. The current approach is based on a cumulative analysis and no information is provided about the 

correct timing of the forecasted AQI levels. To account for this, some preliminary tests were carried out based on two 

additional multi-categorical metrics, which sound interesting in complementing the current approach. The main weakness of 

the proposed approach is the large number of different values to be provided, so making this type of outcome usable only for 430 

single monitoring stations. Moreover, the question of which level of performances in AQI predicting is “good enough” is 

currently an open issue and benchmarking of several forecasting applications is needed to establish some quality criteria.  

5 Conclusions 

A standardized validation protocol for air quality forecast applications was made available, following FAIRMODE 

community discussions on how to address specific issues typical of forecasting applications.  435 
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A common benchmarking framework for model developers and users supporting policymaking under the European Air 

Quality Directives is a major achievement. 

The proposed validation protocol enables an objective assessment of the “fitness for purpose” of a forecasting application, 

since it relies on the usage of a reference forecast as a benchmark (i.e. the persistence model), includes the measurement 

uncertainty, and bases the evaluation on the fulfilment of specific performance criteria, defining an acceptable quality level 440 

of the given model application. 

Moreover, relying on a common standardized validation protocol, the comparison of performances of different forecast 

applications, within a common benchmarking framework, is made available. 

The application of the methodology to validate several forecasting simulations across Europe, using different modelling 

systems and covering various geographical contexts and spatial scales, suggested some considerations about its usefulness.  445 

The main “fitness for purpose” criterion, describing the global performances of the model application with respect to 

persistence skills, proves to be useful for a comprehensive evaluation of the strengths and the shortcomings of a forecasting 

application. Generally, the forecast Modelling Quality Objective turns out to be achievable for most of the examined 

validation exercises. When the criterion was not addressed, side analyses and outcomes, included within the protocol, helped 

in deepening the analysis and in identifying the most critical issues of the forecasting application. 450 

On the other hand, it turned out that, regardless of the spatial scale and the pollutants, it can be hard for a forecast application 

beating persistence model skills in correctly providing categorical answers, namely on exceedances of concentration 

thresholds. Therefore, further tests and analyses are needed in order to provide some criteria for defining the “fitness for 

purpose” of a forecasting application in predicting exceedances. 

The last model capability assessed within the proposed validation protocol concerns the correct prediction of Air Quality 455 

Indices, designed to provide citizens with effective and simple information about air quality and its impact on their health. 

The current approach is based on a cumulative analysis of relative distributions of observed and forecasted AQIs. As no 

information is provided about the correct timing of the forecasted AQI levels, further developments are foreseen based on 

multi-category contingency tables and multi-categorical skill scores. 

Actually, upgrades and improvements of the current validation protocol will be fostered by its usage. Indeed, both the 460 

methodology and the software are publicly available for testing and application, especially targeting air quality forecasting 

services supporting policymaking in European Member States. 

Appendix A 

Measurement uncertainty U(Oi) as a function of the concentration values Oi can be expressed as follow: 

𝑈𝑈(𝑂𝑂𝑖𝑖) = 𝑈𝑈𝑟𝑟(𝑆𝑆𝑅𝑅)�(1 − 𝛼𝛼2)𝑂𝑂𝑖𝑖2 + 𝛼𝛼2𝑆𝑆𝑅𝑅2                                                                                                                                          (𝐴𝐴1) 465 
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Parameters Ur(RV), RV, and α for U(Oi) calculation for NO2, O3 and PM are provided in Table A1. 

Table A1 Parameters for the calculation of measurement uncertainty. 

 𝑼𝑼𝒓𝒓(𝑹𝑹𝑹𝑹) 𝑹𝑹𝑹𝑹 α 

NO2 0.24 200 µg/m3 0.20 

O3 0.18 120 µg/m3 0.79 

PM10 0.28 50 µg/m3 0.25 

PM2.5 0.36 25 µg/m3 0.50 

 

  

  
 
Figure A1: Double relative measurement uncertainties as a function of concentration values for NO2 (top, left), O3 (top, right), 470 
PM10 (bottom, left) and PM2.5 (bottom, right). 

https://doi.org/10.5194/gmd-2023-65
Preprint. Discussion started: 12 April 2023
c© Author(s) 2023. CC BY 4.0 License.



24 
 

Appendix B 

Table B1 Contingency Table. 

Forecast Events 
Yes FA GA+ 
No GA- MA 

CONTINGENCY TABLE 

No Yes 

Observed Events 

 

Appendix C 475 

 
Figure C1: FA1 Forecast Target Plot for PM10, removing Turkish monitoring stations from the validation data set. 
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